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ABSTRACT

The Dunkl-Bessel type transform satisfies some uncertainty principles similar to the
Euclidean Fourier transform. A generalization of Beurling’s theorem, Gelfand-Shilov
theorem, Cowling-Price’s theorem and Morgan’s theorem are obtained for the Dunkl-
Bessel type transform.
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1. INTRODUCTION AND PRELIMINARIES
There are many theorems known which state that a function and its classical Fourier transform on R

cannot both be sharply localized. That is, it is impossible for a nonzero function and its Fourier transform to be
simultaneously small. Here a concept of the smallness had taken different interpretations in different contexts.
Hardy [6], Morgan [9], Cowling and Price [5], Beurling [2] for example interpreted the smallness as sharp
pointwise estimates or integrable decay of functions. Hardy’s theorem [6] for the classical Fourier transform
F on R asserts that

Theorem 1..1 Let f be a measurable function on R such that

|f(x)| ≤ Ce−ax
2

and |F(f)(y)| ≤ Ce−by
2

(1)

for some constants a > 0, b > 0, C > 0 . We have

• If ab > 1
4 , then f = 0 ae.

• If ab < 1
4 , then infinitely nonzero functions satisfy condition (1).

• If ab = 1
4 then f(x)

Considerable attention has been devoted for discovering generalizations to new contexts for the Hardy’s theo-
rem. In particular, Cowling and Price [4] have studied an Lp version of Hardy’s theorem which states that for
p, q ∈ [1,∞], at least one of them is finite, if ‖eax2

f‖p < ∞ and ‖eby2 f̂‖q < ∞, then f = 0 a.e. if ab ≥ 1
4 .

. Furthermore, Beurling’s theorem, which was found by Beurling and his proof was published much later by
Hrmander [7], says that for any non trivial function f ∈ L2(R), the product f(x)f̂(y) is never integrable on
R2 with respect to the measure e|x||y|dxdy, where f̂ stands for the Fourier transform of f . A far reaching
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generalization of this result has been recently proved by Bonami, Demange and Jaming [2]. They proved that
if f ∈ L2(R) satisfies for an integer N∫

R

∫
R

|f(x)||f̂(y)|
(1 + |x|+ |y|)N

e|x||y|dxdy <∞,

then f is the form f(x) = P (x)e−bx
2

, where P is a polynomial of degree strictly lower than N−1
2 and b

is a positive constant. Morgan [9] has established a famous theorem stating that for γ > 2 and η = γ
γ−1 ,

if (aγ)
1
γ (bη)

1
η > (sin(π2 (η − 1))

1
η , ea|x|

γ

f ∈ L∞(R) and eb|x|
ηF(f) ∈ L∞(R). then f is null almost

everywhere.
The outline of the content of this paper is as follows. In section 2 we give an analogue of Cowling-Price’s
theorem for the Dunkl-Bessel type transform Fk,β,n. Section 3 is devoted to Miyachi’s theorem for Fk,β,n.
Section 4 is dedicated to generalize Beurling’s theorem for Fk,β,n. Section 5 is devoted to Morgan’s type
theorem for Fk,β,n.
Let us now be more precise and describe our results. To do so, we need to introduce some notations.
Throughout this paper, the letter C indicates a positive constant not necessarily the same in each occurrence.
We denote by

• aβ =
2Γ(β + 1)
√
πΓ(β + 1

2 )
, where β >

−1

2
.

• x = (x1, ..., xd+1) = (x
′
, xd+1) ∈ Rd×]0,∞[.

• Rd+1
+ = Rd×]0,∞[.

• λ = (λ1, ..., λd+1) = (λ
′
, λd+1) ∈ Cd+1.

• C(Rd+1) the space of continuous functions on Rd+1, even with respect to the last variable.

• E(Rd+1) (resp. D(Rd+1)) the space of C∞ functions on Rd+1, even with respect to the last variable
(resp. with compact support).

• R the root system in Rd\{0}, R+ is a fixed positive subsystem and k ∈ R →]0,∞[ a multiplicity
function.

• wk the weight function defined by

wk(x
′
) =

∏
α∈R+

| < α, x
′
> |2k(α), x

′
∈ Rd.

• Lpk,β(Rd × R+), 1 ≤ p ≤ +∞ the space of measurable functions on Rd × R+ such that

‖f‖k,β,p =

(∫
Rd×R+

|f(x)|pdµk,β(x)dx

) 1
p

< +∞, if 1 ≤ p < +∞, (2)

‖f‖k,β,∞ = ess sup
x∈Rd×[0,+∞[

|f(x)| < +∞, if p =∞ (3)

where
µk,β(x)dx = wk(x′)x2β+1

d+1 dx′dxd+1, x = (x′, xd+1) ∈ Rd × R+. (4)

• Mn the map defined byMnf(x
′
, xd+1) = x2nd+1f(x

′
, xd+1).

• Lpk,β,n(Rd+1
+ ) the class of measurable functions f on Rd+1

+ for which

‖f‖k,β,n,p = ‖M−1n f‖k,β+2n,p <∞.
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• En(Rd+1) (resp. Dn(Rd+1)) stand for the subspace of E(Rd+1) (resp. D(Rd+1)) consisting of func-
tions f such that

f(x
′
, 0) =

(
dkf

dxkd+1

)
(x
′
, 0) = 0, ∀k ∈ {1, ...2n− 1}.

In this section we recall some facts about harmonic analysis related to the Dunkl-Bessel type operator Fk,β,n.
We cite here, as briefly as possible, only some properties. For more details we refer to [1].

Definition 1..2 For all x ∈ Rd×]0,∞[ we define the measure ξk,βx on Rd×]0,∞[ by

dξk,βx (y) = aβx
−2β
d+1 (x2d+1 − yd+1

d+1)β−
1
2 1]0,xd+1[(yd+1)dµx′ (y

′
)dyd+1,

where µx′ is a probability measure on Rd, with support in the closed ball B(o, ‖x‖) of center o and radius
‖x‖. 1]0,xd+1[ is the characteristic function of the interval ]0, xd+1[.

For all y ∈ Rd, we define the measure %k,βy on Rd × [0,∞[, by

d%k,βy (x) = aβ(x2d+1 − y2d+1)β−
1
2xd+11]yd+1,∞[(xd+1)dνy′ (x

′
)dxd+1. (5)

We define the heat functions W k,β
s,p (r, .) related to the Dunkl-Bessel type Laplacian ∆k,β,n by

∀y ∈ Rd+1
+ , W k,β

s,p (r, y) =
i|s|(−1)pc2k

4γ+β+d(Γ(β + 1))2
y2nd+1

∫
Rd+1

+

xs11 ...x
sd
d x

2p
d+1e

−r‖x‖2Λ(x, y)dµk,β+n(x). (6)

These functions satisfy the following properties

∀y ∈ Rd+1
+ , Fk,β,n(W k,β

s,p (r, .))(y) = i|s|(−1)pys11 ...y
sd
d y

2p
d+1e

−r‖y‖2 (7)

Definition 1..3 The Dunkl-Bessel type intertwining operator is the operatorRk,β,n defined on C(Rd+1) by

Rk,β,nf(x) =

∫
Rd+1

x2nd+1f(y)dξk,β+2n
x (y).

Definition 1..4 The dual of the Dunkl-Bessel type intertwining operator Rk,β,n is the operator defined on
Dn(Rd+1) by: ∀y = (y

′
, yd+1) ∈ Rd×]0;∞[,

tRk,β,n(f)(y) =

∫
Rd+1

+

x−2nd+1f(x)d%k,β+2n
y (x). (8)

Proposition 1..5 Let f be in L1
k,β,n(Rd+1

+ ). Then∫
Rd+1

+

tRk,β,n(f)(y)dy =

∫
Rd+1

+

f(x)dµk,β+n(x)dx.

Theorem 1..6 Let f ∈ L1
k,β,n(Rd+1

+ ) and g ∈ C(Rd+1), we have tRk,β,n(f) is defined almost every where
on Rd+1

+ and the following formula∫
Rd+1

+

tRk,β,n(f)(y)g(y)dy =

∫
Rd+1

+

f(x)Rk,β,n(g)(x)dµk,β+n(x)dx.

We consider the function Λk,β,n, given for λ = (λ′, λd+1) ∈ Cd × C by

Λk,β,n(x, λ) = x2nd+1K(x′,−iλ′)jβ(xd+1λd+1), (9)

where jβ(xd+1λd+1) is the normalized Bessel function defined by

jβ(xd+1λd+1) = aβ

∫ 1

0

(1− t2)β−
1
2 cos(xd+1λd+1t)dt
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and K(x′,−iλ′) is the Dunkl Kernel defined by

K(x′,−iλ′) =

∫
Rd
e−i<y,λ

′>dµx′ (y).

Definition 1..7 The Dunkl-Bessel type transform is given for f in Dn(Rd+1) by

∀λ ∈ Rd × R+, Fk,β,n(f)(λ) =

∫
Rd×R+

f(x)Λk,β,n(x, λ)dµk,β(x)dx. (10)

Proposition 1..8 For f ∈ Dn(Rd+1), we have

Fk,β,n(f) = F0 ◦ tRk,β,n(f), (11)

where F0 is the transform defined by ∀λ = (λ′, λd+1) ∈ Rd × R+

F0(f)(λ′, λd+1) =

∫
Rd×R+

f(x′, xd+1)e−i<λ
′,xd+1> cos(xd+1λd+1)dx′dxd+1.

We denote by Lpk,β,n(Rd+1
+ ) the class of measurable functions f on Rd+1

+ for which

‖f‖k,β,n,p = ‖M−1n f‖k,β+2n,p <∞. (12)

2. BEURLING’S THEOREM FOR THE DUNKL-BESSEL TYPE TRANSFORM
To prove the main theorem of this section we need the following lemmas.

Lemma 2..1 Let N ≥ 0. We consider f in L2
k,β,n(Rd+1

+ ) satisfying∫
Rd+1

+

∫
Rd+1

+

|f(x)||Fk,β,n(f)(y)|
(1 + ‖x‖+ ‖y‖)N

e‖x‖‖y‖dµk,β+n(x)dy < +∞. (13)

Then f ∈ L1
k,β,n(Rd+1

+ ).

Proof. Using the Fubini’s theorem and the relation (13) we have for almost every y ∈ Rd+1
+ :

|Fk,β,n(f)(y)|
(1 + ‖y‖)N

∫
Rd+1

+

|f(x)|
(1 + ‖x‖)N

e‖x‖‖y‖dµk,β+n(x) < +∞.

As f is not negligible, there exists y0 ∈ Rd+1
+ , y0 6= 0 such that Fk,β,n(f)(y0) 6= 0. Thus∫

Rd+1
+

|f(x)|
(1 + ‖x‖)N

e‖x‖‖y0‖dµk,β+n(x) < +∞. (14)

Since the function
e‖x‖‖y0‖

(1 + ‖x‖)N
is greater than 1 for large ‖x‖, then

∫
Rd+1

+

|f(x)|dµk,β+n(x) < +∞∫
Rd+1

+

|f(x)|
x2nd+1

dµk,β+2n(x) < +∞∫
Rd+1

+

|M−1n f(x)|dµk,β+2n(x) < +∞

which proves that f ∈ L1
k,β,n(Rd+1

+ ).

Uncertainty Principles for the Dunkl-Bessel type transform (Najat Safouane)
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Theorem 2..2 Let N ∈ N and f ∈ L2
k,β,n(Rd+1

+ ) satisfying (13). Then

• If N ≥ d+ 2 we have
f(y) =

∑
|s|+p<N−d−1

2

ak,βs,pW
k,β
s,p (r, y), y ∈ Rd+1

+ , (15)

where r > 0, ak,βs,p ∈ C and W k,β
s,p (r, .) given by the relation (6).

• Else f(y) = 0 a.e y ∈ Rd+1
+ .

Proof. From Lemma 1 and Theorem 2, the function f belongs to L1
k,β,n(Rd+1

+ ) and the function tRk,β,n(f) is
defined almost everywhere on Rd+1

+ . We shall prove that∫
Rd+1

+

∫
Rd+1

+

e‖x‖‖y‖|tRk,β,nf(x)||F0(tRk,β,n)(y)|
(1 + ‖x‖+ ‖y‖)N

dydx < +∞. (16)

Take y0 as in Lemma 1. We write the above integral as a sum of the following integrals

I =

∫
Rd+1

+

∫
‖y‖≤‖y0‖

e‖x‖‖y‖

(1 + ‖x‖+ ‖y‖)N
|tRk,β,nf(x)||F0(tRk,β(f))(y)|dydx

and

J =

∫
Rd+1

+

∫
‖y‖≥‖y0‖

e‖x‖‖y‖

(1 + ‖x‖+ ‖y‖)N
|tRk,β,nf(x)||F0(tRk,β,n(f))(y)|dydx.

We will prove that I and J are finite, which implies (16).

• As the functions |Fk,β,n(f)(y)| is continuous in the compact y ∈ Rd+1
+ /‖y‖ ≤ ‖y0‖, so we get

I ≤ C
∫
Rd+1

+

e‖x‖‖y0‖|tRk,β,nf(x)|
(1 + ‖x‖)N

dx.

Writing the integral of the second member as I1 + I2 with

I1 =

∫
‖x‖≤ N

‖y0‖

e‖x‖‖y0‖|tRk,β,nf(x)|
(1 + ‖x‖)N

dx

and

I2 =

∫
‖x‖≥ N

‖y0‖

e‖x‖‖y0‖|tRk,β,nf(x)|
(1 + ‖x‖)N

dx.

There for, we have the following results:

– As the function x → e‖x‖‖y0‖

(1 + ‖x‖)N
is continuous in the compact x ∈ Rd+1

+ /‖x‖ ≤ N
‖y0‖ , and f

is in L1
k,β,n(Rd+1

+ ) we deduce by using Fubini-Tonelli’s theorem, and the relation (5), (7) that
tRk,β,n(|f |) belong to L1

k,β,n(Rd+1
+ ). Hence I1 is finite.

– On the other hand, for t > N
‖y0‖ , the function t → et‖y0‖

(1 + t)N
is increasing, so we obtain by using

Fubini-Tonelli’s theorem, and (5), (8) and Proposition 1, that

I2 ≤
∫
Rd+1

+

e‖ξ‖‖y0‖

(1 + ‖ξ‖)N
|f(ξ)|dµk,β+n(ξ).

The inequality (14) assert that I2 is finite. This proves that I is finite.
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• We suppose ‖y0‖ ≤ N . Let J = J1 + J2 + J3, with

J1 =

∫
‖x‖≤ N

‖y0‖

∫
‖y0‖≤‖y‖≤N

e‖x‖‖y‖

(1 + ‖x‖+ ‖y‖)N
|tRk,β,n(f)(x)||Fk,β,n(f)(y)|dydx.

J2 =

∫
‖x‖≥ N

‖y0‖

∫
‖y0‖≤‖y‖≤N

e‖x‖‖y‖

(1 + ‖x‖+ ‖y‖)N
|tRk,β,n(f)(x)||Fk,β,n(f)(y)|dydx.

J3 =

∫
Rd+1

+

∫
‖y‖≥N

e‖x‖‖y‖

(1 + ‖x‖+ ‖y‖)N
|tRk,β,n(f)(x)||Fk,β,n(f)(y)|dydx.

– As the function (x, y) → e‖x‖‖y‖

(1 + ‖x‖+ ‖y‖)N
|Fk,β,n(f)(y)| is bounded in the compact {x ∈

Rd+1
+ /‖x‖ ≤ N

‖y0‖} × {ξ ∈ Rd+1
+ /‖y0‖ ≤ ‖ξ‖ ≤ N} and tRk,β,n(|f |)(x) is Lebesgue-integrable

on Rd+1
+ , then J1 is finite.

– Let λ > 0. As the function t → eλt

(1 + t+ λ)N
is increasing for t > N

λ . Thus, for all (x, y) ∈

C(ξ, y0, N) we have the inequality

e‖x‖‖y‖

(1 + ‖x‖+ ‖y‖)N
≤ e‖ξ‖‖y‖

(1 + ‖ξ‖+ ‖y‖)N
,

with C(ξ, y0, N) = {(x, y) ∈ Rd+1
+ × Rd+1

+ / N
‖y‖ ≤ ‖x‖ ≤ ‖ξ‖ and ‖y0‖ ≤ ‖y‖ ≤ N}. There-

fore, from Fubini-Tonelli’s theorem and the relations (5), (8), we get

J2 ≤
∫
Rd+1

+

∫
Rd+1

+

|(f)(ξ)||Fk,β,n(f)(y)| e‖ξ‖‖y‖

(1 + ‖ξ‖+ ‖y‖)N
dydµk,β+n(ξ).

Taking account of the condition (13), we deduce that J2 is finite.

- For ‖y‖ > N , the function t → et‖y‖

(1 + t+ ‖y‖)N
is increasing. We deduce, by using Fubini-

Tonelli’s theorem and the relations (5), (8), (13) that

J3 ≤
∫
Rd+1

+

∫
‖y‖>N

|(f)(ξ)||Fk,β,n(f)(y)| e‖ξ‖‖y‖

(1 + ‖ξ‖+ ‖y‖)N
dydµk,β+n(ξ) < +∞.

This implies that J3 is finite.
Finally for ‖y0‖ > N , we have J ≤ J3 <∞. This completes the proof of the relation (16).

According to Corollary 3.1, ii) of [4], we deduce that

∀x ∈ Rd+1
+ , tRk,β,n(f)(x) = P (x)e−δ‖x‖

2

with δ > 0 and P a polynomial of degree strictly lower than N−d−1
2 .

Using this relation and (6), we deduce that

∀x ∈ Rd+1
+ , Fk,β,n(f)(y) = F0 ◦t Rk,β,n(f)(y) = F0(P (x)e−δ‖x‖

2

)(y).

But
∀x ∈ Rd+1

+ , F0(P (x)e−δ‖x‖
2

)(y) = Q(y)e
−‖y‖2

4δ ,

With Q a polynomial of degree strictly lower than N−d−1
2 .

Thus from (7) we obtain

∀x ∈ Rd+1
+ , Fk,β,n(f)(y) = Fk,β,n

 ∑
|s|+p<N−d−1

2

ak,βs,pW
k,β
s,p (

1

4δ
, .)

 (y).

Uncertainty Principles for the Dunkl-Bessel type transform (Najat Safouane)
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The injectivity of the transform Fk,β,n implies

∀x ∈ Rd+1
+ , f(x) =

∑
|s|+p<N−d−1

2

ak,βs,pW
k,β
s,p (

1

4δ
, .)(x) a.e,

and the theorem is proved.

3. GELFAND-SHILOV TYPE FOR THE DUNKL-BESSEL TYPE TRANSFORM
In this section we give analogue of the Gelfand-Shilov for the Dunkl-Bessel type transform Fk,β,n.

Theorem 3..1 (Gelfand-Shilov type) Let N ∈ N and assume that f ∈ L2
k,β(Rd+1

+ ) is such that

∫
Rd+1

+

|f(x)|e
(2a)p

p ‖x‖p

(1 + ‖x‖)N
dµk,β+n(x) < +∞, (17)

∫
Rd+1

+

|Fk,β,n(f)(y)|e
(2b)q

q ‖y‖
q

(1 + ‖y‖)N
dy < +∞ (18)

Where 1 < p, q < +∞, 1
p + 1

q = 1, a > 0, b > 0 and ab ≥ 1
4 . Then:

1. If ab > 1
4 , we have f(x) = 0 a.e.

2. We suppose that ab = 1
4 .

• If N < d
2 + 1, 1 < p, q < +∞ we have f(x) = 0, a.e x ∈ Rd.

• If N ≥ d
2 + 1.

– For the cases: 2 ≤ q < +∞, 1 < p < +∞,
1 < q < 2, 2 < p < +∞,
q = 2, p = 2
we have f(x) = 0, a.e x ∈ Rd.

– For the case 1 < q < 2, 1 < p < 2,
we have

f(x) =
∑

|s|+p< 2N−d−1
2

ak,βs,pW
k,β
s,p (r, x), a.e. x ∈ Rd+1

+ , (19)

Where r > 0 and ak,βs,p ∈ C.
– For the case q = 2, 1 < p < 2

If 0 < r ≤ 2b2 we have f(x) = 0, a.e x ∈ Rd+1
+ .

If r > 2b2 the function f is given by the relation (18).
– For the case p = 2, 1 < q < 2

If r ≥ 2b2 we have f(x) = 0, a.e x ∈ Rd+1
+ .

If 0 < r < 2b2 the function f is given by the relation (18).

Proof. Using the inequality

4ab‖x‖‖y‖ ≤ (2a)p

p
‖x‖p +

(2b)q

q
‖y‖q,

we get ∫
Rd+1

+

∫
Rd+1

+

|f(x)||Fk,β,n(f)(y)|
(1 + ‖x‖+ ‖y‖)2N

e4ab‖x‖‖y‖dydµk,β+n(x) ≤

∫
Rd+1

+

|f(x)|e
(2a)p

p ‖x‖p

(1 + ‖x‖)N
dµk,β+n(x)

∫
Rd+1

+

|Fk,β,n(f)(y)|e
(2b)q

q ‖y‖
q

(1 + ‖y‖)N
dy < +∞. (20)
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As ab ≥ 1
4 , then from (20) we deduce that the condition (14) is satisfied. By using the proof of Theorem 3, we

obtain, ∀x ∈ Rd+1
+ ,

tRk,β(f)(x) = P (x)e−
‖x‖2
4r ;∀x ∈ Rd+1

+ ,Fk,β,n(f)(y) = Q(y)e−r‖y‖
2

, (21)

where r is a positive constant and P,Q are polynomials of the same degree which is strictly lower than 2N−d−1
2 .

1) From (20) and the proof of (16) we deduce that∫
Rd+1

+

∫
Rd+1

+

|tRk,βf(x)||F0(tRk,β(f))(y)|
(1 + ‖x‖+ ‖y‖)2N

e4ab‖x‖‖y‖dxdy < +∞, (22)

By replacing in (22) the functions tRk,β,n(f)(x) and Fk,β,n(f)(y) by their expression given in (21), we get∫
Rd+1

+

∫
Rd+1

+

|P (x)||Q(y)|
(1 + ‖x‖+ ‖y‖)2N

e
−(
√
r‖y‖− 1

2
√
r
‖x‖)2

e(4ab−1)‖x‖‖y‖dxdy < +∞, (23)

As ab > 1
4 , there exists ε > 0 such that 4ab− 1− ε > 0. If P is non null, Q is also non null and we have∫

Rd+1
+

∫
Rd+1

+

|P (x)||Q(y)|
(1 + ‖x‖+ ‖y‖)2N

e
−(
√
r‖y‖− 1

2
√
r
‖x‖)2

e(4ab−1)‖x‖‖y‖dxdy

≥ C
∫
Rd+1

+

∫
Rd+1

+

e
−(
√
r‖y‖− 1

2
√
r
‖x‖)2

e(4ab−1−ε)‖x‖‖y‖dxdy,

Where C is a positive constant. But the function

e
−(
√
r‖y‖− 1

2
√
r
‖x‖)2

e(4ab−1−ε)‖x‖‖y‖

is not integrable, (23) does not hold. Hence f(x) = 0 a.e.
2)
i) We deduce the result from (20) and Theorem 3.
ii) By using (20) the relations (9), (11) can also be written in the form∫

Rd

|Fk,β,n(f)(y)|e
(2b)q

q ‖y‖
q

(1 + ‖y‖)N
dy =

∫
Rd

|Q(y)|e−r‖y‖2e
(2b)q

q ‖y‖
q

(1 + ‖y‖)N
dy.

and ∫
Rd

|f(x)|e
(2a)p

p ‖x‖p

(1 + ‖x‖)N
ωk(x)dx =

∫
Rd

|P (x)|e−
‖x‖2
4r e

(2a)p

p ‖x‖p

(1 + ‖x‖)N
ωk(x)dx.

We obtain ii) from Theorem 3 and by studying the convergence of these integrals as we have made it
in 1).

4. HARDY TYPE FOR THE DUNKL-BESSEL TYPE TRANSFORM
Theorem 4..1 (Hardy type) Let N ∈ N. Assume that f ∈ L2

k,β(Rd+1
+ ) is such that

|f(x)| ≤Me−
1
4a‖x‖

2

a.e

and
∀x ∈ Rd+1

+ , |Fk,β,n(f)(y)| ≤M(1 + |yj |)Ne−b|yj |
2

, j = 1, ..., d+ 1, (24)

for some constants a > 0, b > 0 and M > 0. Then,
i) If ab > 1

4 , then f = 0 a.e.
ii) If ab = 1

4 , the function f is of the form

f(x) =
∑

|s|+p≤N

ak,βs,pW
k,β
s,p (

1

4a
, x) a.e. where ak,βs,p ∈ C.

iii) If ab < 1
4 , there are infinity many nonzero functions f satisfying the condition (24).
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Proof. The first condition of (24) implies that f ∈ L1
k,β(Rd+1

+ ). So by Theorem 2, the function tRk,β,n(f) is
defined almost everywhere. By using the relation (11) we deduce that for all x ∈ Rd+1

+ ,

|tRk,β,n(f)(x)| ≤M0e
−a‖x‖2 ,

where M0 is a positive constant. So,

|tRk,β,n(f)(x)| ≤M0(1 + |xj |)Ne−a|xj |
2

, j = 1, ..., d+ 1, (25)

On the other hand from (11) and (24) we have for all x ∈ Rd+1
+ ,

|F0(tRk,β,n)(f)(y)| ≤M(1 + |yj |)Ne−b|yj |
2

, j = 1, ..., d+ 1, (26)

The relations (25) and (26) show that the conditions of Proposition 3.2 of [4] are satisfied by the function
tRk,β,n(f). Thus we get:
i) If ab > 1

4 , tRk,β,n(f) = 0 a.e. Using (11) we deduce

∀y ∈ Rd+1
+ ,Fk,β,n(f)(y) = F0 ◦ (tRk,β,n)(f)(y) = 0.

Then from Theorem 2.3.1 of [8] we have f = 0 a.e.
ii) If ab = 1

4 , then tRk,β,n(f)(x) = P (x)|e−a‖x‖2 , where P is a polynomial of degree strictly lower than N .
The same proof as the end of theorem shows that

f(x) =
∑

|s|+p≤N

ak,βs,pW
k,β
s,p (

1

4a
, x) a.e.

iii) If ab < 1
4 , let t ∈]a, 1

4b [ and f(x) = Ce−t‖x‖
2

for some real constant C, these functions satisfy the
conditions (24).

5. COWLING-PRICE THEOREM FOR THE DUNKL-BESSEL TYPE TRANSFORM
Theorem 5..1 (Cowling-Price type) Let N ∈ N and assume that f ∈ L2

k,β(Rd+1
+ ) is such that∫

Rd+1
+

ea‖x‖
2

|f(x)|dµk,β+n(x) < +∞, and
∫
Rd+1

+

eb‖y‖
2

(1 + ‖y‖)N
|Fk,β,n(f)|dy < +∞ (27)

for some constants a > 0, b > 0. Then
i) If ab > 1

4 , we have f = 0 a.e.
ii) If ab = 1

4 , then when N ≥ d+ 2 we have

f(x) =
∑

|s|+p≤N−d−1
2

ak,βs,pW
k,β
s,p (

1

4a
, x) a.e where ak,βs,p ∈ C.

iii) If ab < 1
4 , there are infinity many nonzero functions f satisfying the condition (27).

Proof. From the first condition of (27) we deduce that f ∈ L1
k,β(Rd+1

+ ). So by Theorem 3, the function
tRk,β,n(f) is defined almost everywhere. By using the relation (5), (8) and (27) we have:∫

Rd+1
+

|tRk,β,n(f)(x)|ea‖x‖2

(1 + ‖x‖)N
dx ≤

∫
Rd+1

+

tRk,β,n(ea‖x‖
2

|f |)(x)dx,

≤
∫
Rd+1

+

ea‖y‖
2

|f(y)|dµk,β+n(y) < +∞.
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So ∫
Rd+1

+

|tRk,β,n(f)(x)|ea‖x‖2

(1 + ‖x‖)N
dx < +∞. (28)

On the other hand from (11) and (27) we have:∫
Rd+1

+

eb‖y‖
2

(1 + ‖y‖)N
|Fk,β,n(f)|dy =

∫
Rd+1

+

eb‖y‖
2

(1 + ‖y‖)N
|F0(tRk,β,n)(f)(y)|dy < +∞. (29)

The relations (28) and (29) are the conditions of Proposition 3.2 of [2] which are satisfied by the function
tRk,β,n(f). Thus we get: i) If ab > 1

4 , tRk,β,n(f) = 0 a.e.
Using the same proof as of Theorem 5 we deduce f(x) = 0. a.e. x ∈ Rd+1

+ .
ii) If ab = 1

4 , then tRk,β,n(f)(x) = P (x)|e−a‖x‖2 , where P is a polynomial of degree strictly lower than
N−d−1

2 . The same proof as the end of theorem shows that

f(x) =
∑

|s|+p≤N−d−1
2

ak,βs,pW
k,β
s,p (

1

4a
, x) a.e.

iii) If ab < 1
4 , let t ∈]a, 1

4b [ and f(x) = Ce−t‖x‖
2

for some real constant C, these functions satisfy the
conditions (27). This complete the proof.

6. MORGAN TYPE FOR THE DUNKL-BESSEL TYPE TRANSFORM
Theorem 6..1 (Morgan type) Let 1 < p < 2 and q be the conjugate exponent of p. Assume that f ∈
L2
k,β(Rd+1

+ ) satisfies∫
Rd+1

+

e
ap

p ‖x‖
p

|f(x)|dµk,β+n(x) < +∞, and
∫
Rd+1

+

e
bq

q ‖y‖
q

|Fk,β,n(f)(y)|dy < +∞, (30)

for some constants a > 0, b > 0.
Then if ab > | cos(pπ2 )|

1
p , we have f = 0 a.e.

Proof. From the first condition of (30) implies that f ∈ L1
k,β(Rd+1

+ ). So by Theorem 2, the function tRk,β(f)
is defined almost everywhere. By using the relation (5), (30) we have:∫

Rd+1
+

|tRk,β,n(f)(x)|e
ap

p ‖x‖
p

dx ≤
∫
Rd+1

+

e
ap

p ‖y‖
p

|f(y)|dµk,β+n < +∞.

So ∫
Rd+1

+

|tRk,β,n(f)(x)|e
ap

p ‖x‖
p

dx < +∞ (31)

On the other hand, from (11) and (30) we have:∫
Rd+1

+

e
bq

q ‖y‖
q

|Fk,β,n(f)(y)|dy =

∫
Rd+1

+

e
bq

q ‖y‖
q

|F0(tRk,β,n)(f)(y)|dy < +∞. (32)

The relations (31) and (32) are the conditions of Theorem 1.4 of [4] , which are satisfied by the function
tRk,β,n(f). Thus we deduce that if ab > | cos(pπ2 )|

1
p we have tRk,β,n(f) = 0 a.e. Using the same proof as

the Theorem 5 we obtain f(y) = 0. a.e. y ∈ Rd+1
+ .
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