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       Few years ago, the higher-order shear deformation theory of Shi was 

proven effective in the analysis of structures. In this paper, the author 

introduces a modification of above theory combined with four-node 

quadrilateral elements for bending and free vibration analyses of plates. Shear 

correction factor is not required here. The acceptable results obtained from the 

proposed element are a necessary prerequisite for the development of other 

problems in the near future.  
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1. INTRODUCTION 

A slew of plate theories have been introduced in the past few decades [1-8]. For instance, a higher-order 

shear deformation theory was used to analyse laminated anisotropic composite plates for deflections, stresses, 

natural frequencies and buckling loads by authors Phan and Reddy [8]. This theory presented parabolic 

distribution of the transverse shear stresses and without any shear correction factors. An other shear 

deformation theory was introduced in [9] to study free vibration analysis of the simply supported functionally 

graded plates. The shear functions gave in this paper satisfy the stress-free boundary conditions on the top and 

bottom surfaces and vary with a gradient index of functionally graded plates without using any shear correction 

factor. Besides, the displacement field was expressed as undetermined integral terms. The governing 

differential equation and boundary conditions were derived based on Hamilton's principle. In other way, 

displacement based finite element using equivalent-single-layer theory was proposed by Rajaneesh et al. [10]. 

With some benefits of a new first-order shear deformation theory, they were applied to compute stiffness, mass 

and force matrices and based on only two variables against three variables in Mindlin’s first order theory, etc. 

The third-order shear deformation plate theories have some advantages related to the quadratic variation of the 

transverse shear stresses and strains along the thickness as well as the shear locking free. The author Shi [6] 

introduced another third-order shear deformation plate theory based on meticulous kinematics of 

displacements, initially applied to static analysis of isotropic and orthotropic beams and plates. The solutions 

obtained by Shi's theory have more reliable than others. Beside the analytical approaches, the numerical 

methods are used in the structural analyses [11-20]. In this study, the bending and free vibration analyses of 

plates based on the finite element procedure and the modification of Shi’s theory is introduced as the main 

objective.  

https://ijeap.org/
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The rest sections are built as follows. The modification of Shi theory and the finite element formulation for 

bending and free vibration analyses of plates are presented in Sect.2. The results of proposed method are shown 

and compared with other references in Sect.3. Sect.4 draws out some remarks of this paper.   

 

2. FORMULATIONS 

In this paper, the author proposes a modification of Shi theory expressed as follows 
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Figure 1. The proposed element with seven degrees of freedom per node  

 

With the small strain assumptions, the strain-displacement relations can be shown  
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Eqs. (5) and (6) become 
(0) (1) 3 (3)z= + +ε ε ε εz  (9) 

(0) 2 (2)z= +γ γ γ  (10) 
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Under Hooke’s law, the constitutive equations are given 
(0) (1) 3 (3)( )= + +σ D ε zε z εm  (11) 
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The displacements can hence be approximated as 
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eq and N are the unknown displacement vector and the shape function vector. From above equations, the strain 

can be rewritten 
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The total strain energy of a plate can be given by 
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The kinetic energy is shown 
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For bending analysis  
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For free vibration analysis 
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3. RESULTS 

In this section, the author will present some examples to illustrate the applicability of the proposed element 

for bending and free vibration analyses. 

Firstly, the simply supported plate with side lengths a, b and thickness h is studied. The uniform load q is 

considered to be illustrated in Figure 2. The normalized deflection and stress at central point can be depicted 
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Figure 2. The plate with uniform load  
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By changing the ratios b/a and a/h, the results of this paper are shown in Table 1 and compared with solutions 

of author Reddy [5] based on a higher-order shear deformation theory. A good agreement is observed for all 

values of above ratios confirming the accuracy of present results.  

Secondly, to verify the accuracy of present results related to the modified shear deformation theory without 

any shear correction factors, the nondimensional deflections 
4

100
,

2 2

 
=  

 

D a b
w w

qa
 are calculated and compared 

in Table 2 with exact solutions [7] for various values of length to thickness ratio a/h from thick to thin plate. It 

can be seen that the proposed method is not only accurate but also efficient in static bending analysis. 

 

 

Table 1. The normalized central deflection and stress of simply supported plates 

b/a a/h Theory w  x  

1 

5 
HSDT [5] 0.0535 0.2944 

Present 0.0535 0.2942 

10 
HSDT [5] 0.0467 0.2890 

Present 0.0466 0.2887 

100 
HSDT [5] 0.0444 0.2873 

Present 0.0443 0.2872 

2 

5 
HSDT [5] 0.1248 0.6202 

Present 0.1247 0.6200 

10 
HSDT [5] 0.1142 0.6125 

Present 0.1141 0.6123 

100 
HSDT [5] 0.1106 0.6100 

Present 0.1105 0.6098 

 

 

Table 2. The nondimensional deflections for thick and thin plates 

b/a a/h Theory w  

2 

5 
Exact [7] 1.1428 

Present 1.1423 

10 
Exact [7] 1.0454 

Present 1.0445 

25 
Exact [7] 1.0181 

Present 1.0171 

1000 
Exact [7] 1.0129 

Present 1.0119 

 

Finally, the natural frequencies of a simply supported plate are calculated. These parameters can be 

normalized by formulating 
2 /= a h D   .  Table 3 shows the first three normalized frequencies of this 

paper and other results based on a higher-order shear deformation theory of author Reddy [5]. Again, the 

difference between the two approaches is negligible.  

 

Table 3. The normalized frequencies of rectangular plate 

a/b h/a Theory 
Mode 

1 2 3 

0.5 

0.01 
HSDT [5] 12.3342 19.7320 32.0572 

Present 12.4344 20.1185 33.8274 

0.1 
HSDT [5] 12.0675 19.0653 30.3623 

Present 12.1572 19.3968 31.8088 

0.2 
HSDT [5] 11.3717 17.4523 26.6838 

Present 11.3929 17.5016 26.8765 

1 

0.01 
HSDT [5] 19.7320 49.3032 49.3032 

Present 19.8855 50.7044 50.7044 

0.1 
HSDT [5] 19.0653 45.4869 45.4869 

Present 19.1872 46.3754 46.3754 

0.2 HSDT [5] 17.4523 38.1883 38.1883 
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Present 17.3483 36.4226 36.4226 

Moreover, the first six mode shapes of this structure can be also seen as below: 

 

   

Mode 1 Mode 2 Mode 3 

   
Mode 4 Mode 5 Mode 6 

Figure 3. The first six mode shapes of simply supported plate with a/b = 1 and h/a = 0.01.  

 

4. CONCLUSION 

This paper deals with the bending and free vibration analyses of plates related to finite element procedure 

under a modified shear deformation theory. The computational solutions of the proposed finite element are 

depicted and compared with the results in other literatures. The effects of some parameters like aspect ratio, 

thickness ratio are also shown in above section. It can be concluded that the present method is not only accurate 

but also efficient. The paper also helps to supplement the knowledge for new researchers. 
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