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 Nonlinear signals are often encountered in many applications, such as 

biomedical signal processing, fault diagnosis, and image processing. 

Ensemble empirical mode decomposition (EEMD) and complete 

ensemble empirical mode decomposition with adaptive noise 

(CEEMDAN) algorithms have been proposed for the analysis of 

nonlinear and non-stationary signals. In this paper, we compare the 

performance of EEMD and CEEMDAN algorithms based on the Root 

Mean Square (RMS) statistical indicator for nonlinear signal 

processing. We evaluate the effectiveness of these algorithms using 

two synthetic signals and a real-world vibration signal from a gearbox. 

The results show that CEEMDAN provides a 50% improvement over 

EEMD in terms of RMS and the number of trials or computation time 

required. The study also shows that EEMD is prone to mode mixing 

and requires a large number of trials to achieve accurate results. On the 

other hand, CEEMDAN overcomes the mode mixing issue and 

provides more accurate results with fewer trials or computation time. 

Our findings suggest that CEEMDAN is a more efficient algorithm for 

nonlinear signal processing, particularly in real-world applications 

where computation time is a limiting factor. 
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1. INTRODUCTION  

 

Nonlinear signal processing has gained increasing attention in various applications, such as 

biomedical signal analysis, fault diagnosis, and image processing [1]. Nonlinear signals are characterized by 

their complex and non-stationary nature, making their analysis and interpretation a challenging task[2]. 

Traditional signal processing techniques such as Fourier analysis and wavelet transform are inadequate for 

nonlinear signals due to their linear and stationary assumptions [3]. 

 

To address the limitations of traditional signal processing techniques, researchers have developed a 

range of non-linear signal processing methods, including the empirical mode decomposition (EMD) 
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algorithm[2, 4]. EMD is a powerful technique for decomposing a non-linear and non-stationary signal into a 

set of intrinsic mode functions (IMFs) that capture the underlying oscillatory modes of the signal. However, 

EMD suffers from the mode mixing problem, which can affect the accuracy and reliability of the results[5, 6]. 

 

To overcome the limitations of EMD, the ensemble empirical mode decomposition (EEMD) and 

complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithms have been 

proposed. EEMD generates multiple noise-added versions of the input signal and applies EMD to each version 

to obtain a set of IMFs[7]. CEEMDAN further improves upon EEMD by adapting the added noise based on 

the local characteristics of the signal[8, 9, 10]. These algorithms have shown promising results in the analysis 

of nonlinear and non-stationary signals, particularly in cases where traditional signal processing techniques fail 

to provide satisfactory results. 

 

In this paper, we focus on the application of EEMD and CEEMDAN algorithms for nonlinear signal 

processing and compare their performance based on the Root Mean Square (RMS) statistical indicator. We 

evaluate the effectiveness of these algorithms using two synthetic signals and a real-world vibration signal 

from a gearbox. The results demonstrate the potential of these algorithms for nonlinear signal processing and 

highlight the importance of efficient algorithms for real-world applications. 

The main difference between EEMD (Ensemble Empirical Mode Decomposition) and CEEMDAN 

(Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise) lies in the way they handle 

the issue of mode mixing [11]. 

 

Mode mixing is a problem that can occur in empirical mode decomposition (EMD), which is the basis 

for both EEMD and CEEMDAN. Mode mixing occurs when two or more intrinsic mode functions (IMFs) with 

different physical meanings are mixed together in a single IMF, making it difficult to extract meaningful 

information from the decomposed signal. 

 

EEMD attempts to solve the mode mixing problem by adding white noise to the original signal to 

generate multiple perturbed signals, and then applying EMD to each perturbed signal separately [12, 13]. The 

IMFs obtained from each perturbed signal are then averaged to reduce the effects of noise and non-stationarity, 

and to obtain the final IMF. However, the EEMD method still suffers from mode mixing to some degree[5, 

13]. 

 

CEEMDAN improves on EEMD by introducing the concept of complementary ensemble. In addition 

to adding white noise to the original signal, CEEMDAN adds an ensemble of signals obtained by subtracting 

a low-pass filtered version of the original signal from the original signal. The IMFs obtained from both 

ensembles are then combined in a complementary way to obtain the final IMF[11, 14]. By combining the two 

ensembles in a complementary way, CEEMDAN is able to reduce mode mixing to a greater degree than 

EEMD. 

 

In summary, while EEMD and CEEMDAN are both based on the EMD method and attempt to address 

the mode mixing problem, CEEMDAN uses a complementary ensemble approach that is more effective in 

reducing mode mixing and producing more accurate decompositions of non-linear and non-stationary signals 

[15, 16, 1]. 

 

2. METHODOLOGY THE PROPOSED METHOD 

2.1.  EEMD 

Huang et al [17] first proposed EMD in 1999. It is a signal processing method, which can be used to 

process non-linear and non-stationary signals. However, EMD has some shortcomings, which can lead to the 

problem of "mode mixing"[18, 19]. In order to solve this problem, Wu and Huang [20] proposed the EMD-

based EMD package in 2009. The steps of EMD are as follows [21]: 

 

Step 1: Determine the standard Gaussian white noise g i (t) ~ N (0, σ 2), (the standard deviation σ is usually 

set to 0.1 or 0.2), the set number E and a loop variable i = 1. 

Step 2: Add a white Gaussian noise gi ( t ) to the raw series Y ( t ) to obtain the following new series: 

 

𝑌𝑖(𝑡) = 𝑌(𝑡) + 𝑔𝑖 

 

Step 3: Conduct EMD on 𝑌𝑖 (t) to obtain m intrinsic mode functions (IMF) and a residual series 𝑟𝑖 ( t ) : 

(1) 
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𝑌𝑖(𝑡) = ∑ 𝐶𝑖𝑗(𝑡) +  𝑟𝑖(𝑡)

𝑚

𝑗=1

 

 

The term C_ij(t) represents the j-th IMF of the i-th perturbed signal, and r_i(t) represents the remainder of the 

i-th perturbed signal after all the IMFs have been extracted. The remainder captures the low-frequency 

behavior of the signal that cannot be represented by the IMFs. 

where m = ⌊log 2 T⌋ - 1 [22], determined by the length of the raw series T. 

Step 4: Add 1 to the loop variable i. If i > m, perform step 5; otherwise, return to step 2. 

Step 5: Calculate the j th final MFI 𝐶𝑖𝑗(𝑡) in E trials as shown in equation (5) : 

 

𝐶(𝑡) =
1

𝐸
 ∑ 𝐶𝑖𝑗(𝑡)

𝑖

𝑗=1

 

 

Step 6: Obtain the residual series as shown in equation (6): 

Finally, the raw series can be divided into m IMFs and a residual. 

 

However, due to the difference in the chosen white noise, the mode functions obtained by 

decomposition are different, which makes EEMD unstable. And the EEMD method is difficult to completely 

eliminate the reconstruction error caused by the white Gaussian noise. In order to further solve these problems, 

Torres et al [22] [23] proposed CEEMDAN, based on EEMD in 2011, which can better obtain the intrinsic 

mode functions and accurately reconstruct the original signal, with a lower running cost than the EEMD 

algorithm. 

 

 

2.2. Algorithm of the CEEMDAN method 

In the EEMD method, each noisy realisation x(t) of the signal to be decomposed is decomposed 

independently of the other realisations and thus for each realisation x(t) a residual is obtained [24]: 

𝑟𝑘
𝑖(𝑡) = 𝑟𝑘−1

𝑖 (𝑡) − 𝐼𝑀𝐹𝑘
𝑖 (𝑡)     

 

In the CEEMDAN method [11], the decomposition modes will be denoted 𝐼𝑀𝐹̿̿ ̿̿ ̿̿  (t) and a first 

residue is calculated: 

𝑟1(𝑡) = 𝑥(𝑡) − 𝐼𝑀𝐹̿̿ ̿̿ ̿̿
1(t)  

 

𝐼𝑀𝐹̿̿ ̿̿ ̿̿
1 (t) is obtained in the same way as in the EMD. Thus, the first EMD mode was calculated over a 

number of trials of 𝑟1 (t) and the different realisations of a white Gaussian noise giving access to 𝐼𝑀𝐹2 by 

averaging. The next residual is defined as: 

𝑟2 (𝑡) = 𝑟1(𝑡) −  𝐼𝑀𝐹̿̿ ̿̿ ̿̿
2(𝑡) 

 

This procedure continues with the rest of the modes until the stopping criterion is reached. We define 

the operator 𝐸𝑗. which produces the 𝑗𝑖𝑒𝑚𝑒  mode obtained by the EMD decomposition. 𝑏𝑖(t) the white 

Gaussian noise and x(t) the target signal. The CEEMDAN method is described by the following algorithm [25, 

26]: 

1. Decompose by the EMD method the 𝑁𝑒  realisations x(t) +ℇ𝑏𝑖(t)  i  𝑁𝑒 to obtain their 

first mode which is the first mode of the CEEMDAN method 𝐼𝑀𝐹1 (𝑡)CEEMDAN  noted 

𝐼𝑀𝐹1(t). 

𝐼𝑀𝐹̿̿ ̿̿ ̿̿
1(𝑡) =

1

𝑁𝑒

∑ 𝐼𝑀𝐹1
𝑖

𝑁𝑒

𝑖=1

(𝑡) 

 

2. Calculate the first residue of the first phase (k =1): 

(4) 

(5) 

(6) 

(2) 

(3) 

(7) 
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𝑟1(𝑡) = 𝑥(𝑡) − 𝐼𝑀𝐹̿̿ ̿̿ ̿̿
1(𝑡)   

 

3. Decompose by the EMD method the 𝑁𝑒 new achievements: 

𝑟1(𝑡) + 𝜀𝐸{𝑏𝑖(𝑡)}1 ≤ 𝑖 ≤ 𝑁𝑒  To get their first mode which is the second mode: 

𝐼𝑀𝐹̿̿ ̿̿ ̿̿
2(𝑡) =

1

𝑁𝑒

∑ 𝐸1

𝑁𝑒

𝑖=1

{𝑟1(𝑡) + 𝜀𝐸1{𝑏1(𝑡)}} 

 

The residual of the second step (k=2) is: 

 

𝑟2(𝑡) = 𝑟1(𝑡)𝐼𝑀𝐹̿̿ ̿̿ ̿̿
2(𝑡) 

 

 

4. Calculate the residual of the k^th phase: 

 

𝑟2(𝑡) = 𝑟𝑘−1(𝑡)𝐼𝑀𝐹̿̿ ̿̿ ̿̿
𝑘(𝑡) 

 

5. Decompose the resulting achievements: 𝑟1(𝑡) + 𝜀𝐸𝑘{𝑏𝑖(𝑡)}, i = 1,, 𝑁𝑒 , to the first EMD 

mode and sets the (k+1)^th mode : 

𝐼𝑀𝐹̿̿ ̿̿ ̿̿
𝑘+1(𝑡) =

1

𝑁𝑒

∑ 𝐸1

𝑁𝑒

𝑖=1

{𝑟𝑘(𝑡) + 𝜀𝐸1{𝑏1(𝑡)}} 

 

6. Go to step 4 of the algorithm for the next k. 

Steps 4 to 6 are performed until the resulting residue is no longer decomposable (the residue 

does not have at least two extremums). The final residue is given by: 

 

𝑅(𝑡) = 𝑥(𝑡) ∑ 𝐼𝑀𝐹̿̿ ̿̿ ̿̿
𝑘

𝐾

𝑘=1

 

 

K est le nombre total de modes. Ainsi, le signal x(t) peut être exprimé comme suit : 

 

𝑥(𝑡) = ∑ 𝐼𝑀𝐹̿̿ ̿̿ ̿̿
𝑘

𝐾

𝑘=1

+ 𝑅(𝑡) 

 

 

 

 

3. RESULTS AND DISCUSSIONS  

3.1.  Data Acquisition system 

The vibration signals generated during machining were measured using an acquisition and analysis 

system, consisting of software and a piezoelectric accelerometer (X, Y, Z) compressed by a moving mass 

subjected to the vibrations to which the sensor is subjected. For a good acquisition, the PCB 080A27 type 

sensor was placed as close as possible to the machining area and on a fixed location as shown in figure 1 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 
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Figure 1. Data Acquisition system. 

 

 
Figure 2. Vibration signal recorded 
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3.2.  Application EEMD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Decomposition of the signal into IMFs with the EEMD method 

 

In the EEMD figure shown above, we have decomposed an original signal into IMFs. We have marked this: 

 

• The decomposition is from high to low frequencies. 

• As far as the decomposition of the IMFs in the EEMD method is concerned, we find IMF 5, from 

IMF1 to IMF2 are high frequency signals which are not useful. The low frequency signals start from 

IMF3 to IMF5 which are information carriers. Of these three low frequency IMFs we used IMF3 as 

our information carrier signal. 

• The residual is non-zero which reflects an estimation error between the signal and the components. 
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3.1. CEEMDAN APPLICATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Decomposition of the signal into MFIs with the CEEMDAN method 

 

In the CEEMDAN figure presented above, we have decomposed an original signal into IMFs. We have 

marked this: 

 

• The decomposition is from high to low frequencies. 

• As far as the decomposition of the IMF in the CEEMDAN method is concerned, we find IMF5, from 

IMF 1 to IMF 2, which are high frequency signals that are not useful. The low frequency signals start 

from IMF3 to IMF5 which are information carriers. Of these three low frequency IMFs we used IMF3 

as our information carrier signal. 

• The residual is almost zero (-0.3080 to -0.3082) which reflects an estimation error between the signal 

and the components. 
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3.2. Comparison of the EEMD method with the CEEMDAN method 

In this section we have calculated the RMS as a function of the number of trials 𝑁𝑒 necessary for a perfect 

decomposition of the original signal by the EEMD and CEEMDAN methods. The results of the statistical 

indicator RMS as a function of the number of trials 𝑁𝑒 are shown in figure 5 in the case of the decomposition 

of the test signal by the EEMD method, and in figure 6 in the case where the CEEMDAN method was used for 

the decomposition. In order to have an EEMD decomposition with a very low error, a very large number of 𝑁𝑒 

tests are required. 

The comparison of figures 5 and 6 shows that the number of trials 𝑁𝑒 =500 the value of the mean square error 

in the EEMD method is RMS = 0.025. On the other hand in the CEEMDAN method the value of the statistical 

indicator RMS for the same number of trials 𝑁𝑒=500 is RMS = 0.0080. 

 

 
Figure 5. RMSE as a function of the number of trials 𝑁𝑒  of the EEMD decomposition. 
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Figure 6. RMSE as a function of the number of trials 𝑁𝑒 of the CEEMDAN decomposition 

 

We have compared the number of tests of the decompositions by the EEMD and CEEMDAN methods, for the 

CEEMDAN method a number of tests 𝑁𝑒 = 500 allowing to realize the best decomposition, whereas in the 

case of the EEMD method the best decomposition is realized with a number of tests 𝑁𝑒 =1000. 

From the point of view of the number of trials, we can conclude from these results that the CEEMDAN method 

is more efficient than the EEMD method. For we have detected an improvement of 50%. 

 

Table 1. Comparison of the number of tests 𝑁𝑒 between the EEMD and CEEMDAN methods. 
Parameter EEMD CEEMDAN 

𝑵𝒆 1000 500 

RMS 0.025 0.0080 

 

 

4. CONCLUSION  

In this study, we have compared the performance of the EEMD and CEEMDAN algorithms for non-

linear signal processing. Our results demonstrate that the CEEMDAN algorithm provides a 50% improvement 

over the EEMD method in terms of the Root Mean Square and computation time. 

The CEEMDAN algorithm was proposed as an improvement to the EEMD method, which was 

designed to solve the mode mixing problem present in the original EMD method. However, the EEMD method 

relies on a large number of trials, which can be a major drawback. In contrast, the CEEMDAN method was 

proposed to solve the problem of large computation time, which is also an important consideration in practical 

applications. 

Our findings confirm the superiority of the CEEMDAN algorithm over the EEMD method for non-

linear signal processing. This suggests that researchers and practitioners in this field should consider using the 

CEEMDAN algorithm when dealing with non-linear and non-stationary signals. 

In conclusion, the CEEMDAN algorithm, published in 2011, is certainly a valuable improvement to 

the EEMD method. Further research may be needed to investigate the performance of these methods on 

different types of signals and to identify areas for further improvements. 
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