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 The lithium-ion battery is the key power source of an electric vehicle. The 

cornerstone of safe transportation vehicles is reliable real-time state of charge 

(SOC) information. Since batteries are the primary form of energy storage in 

electric vehicles (EVs) and the smart grid, estimation of the state of charge is 

a critical need for batteries. The SOC estimate approach is considered to be 

precise and simple to apply for such applications. In this paper, After studying 

a battery model with an appropriate resistor-capacitor (RC) circuit, A lookup 

table derived from experimental studies describes the nonlinear connection 

between the Open Circuit Voltage Voc and the the state of charge. However, 

if temperature or SOC varies, the equivalent circuit model's characteristics will 

vary, decreasing the accuracy of SOC calculation. The recursive least squares 

(RLS) and nonlinear Extended Kalman filters are used in this research to offer 

a charge estimate technique with online parameter identification to handle this 

problem. RLS dynamically updates the Thevenin model's parameters. In order 

to improve the precision of SOC prediction under charge and discharge 

settings, we presented a regression least-squares-extended Kalman filter (RLS-

EKF) estimation approach in this study. The objective of this research is to 

ensure the updating of the battery parameters and to evaluate the influence of 

this improvement on the convergence of the state of charge towards the real 

value. The simulation results suggest that the RLS EKF estimation technique, 

which is based on precise modeling, may greatly increase SOC estimation 

accuracy. 
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1. INTRODUCTION 

    Electric vehicles are being deployed more frequently and extensively over the world as a result  of 

environmental pollution and the energy crises [1]. One of an electric vehicle's key parts is the battery 

management system (BMS). State of charge (SOC) estimate, state of health (SOH) estimation, battery 

balancing control, temperature management are some of the BMS's functionality. The primary purpose of BMS 

and the foundation for other functions is SOC estimation, which specifies how much capacity the battery can 

deliver [2]. In electric cars (EVs) or plug-in hybrid electric cars (PHEVs), a battery pack is frequently made up 
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of tens to thousands of battery cells connected in parallel, series, or another more high quality architecture, in 

the literature, many architectures have been presented [3]. As a result, it is crucial to use a "battery management 

system" (BMS) to protect, supervise, and regulate the pack to maintain the appropriate performance. Estimating 

the battery's current states, which typically comprise state of charge and state of health (SOH) [4], is a crucial 

function for the BMS. The SOC estimation for EV battery packs is the main topic of this research, The most 

crucial energy storage component in electric vehicles (EVs) and the smart grid is the battery, that’s requires 

estimation of the state of charge on a regular basis. SOC estimation consists of applying an algorithm, such as 

the Kalman filter (KF) [8] , extended Kalman filter (EKF) [5], [6], H infini [7], [8] , or leastsquares based filter 

[9], to a battery models with varying degrees of complexity in order to link the measurable battery values, such 

as voltage, current, and temperature, with the state of charge [10], [11]. The reliability of SOC estimation in 

these methods heavily depends on the model's precision, yet the parameters of the battery model are always 

prone to change because of working conditions and aging [10]. The foundation of every battery management 

system is the assessment of state of charge. The equivalent circuit model with fixed parameters is the basis of 

the majority of closed-loop SOC prediction approaches. However, if temperature or the charge changes, the 

equivalent circuit model's parameters will vary, decreasing the accuracy of SOC calculation [12]. In order to 

confront this problem using the nonlinear Kalman filter and recursive least squares. This paper proposes two 

SOC estimation strategies with real time parameter identification. RLS continuously updates the parameters of 

a Thevenin model. The nonlinear Kalman filter is used in the recursive process to estimate SOC. This is done 

to satisfy the BMS criteria for EVs, which had previously disputed. The estimation of SOC and battery model 

parameters may be accomplished with success using this straightforward yet through technique. 

       In this paper, based on the first-order RC equivalent circuit model, an online identification parameter 

model based on EKF is derived under the Recursive least square RLS method. This work Highlight the impact 

of the online battery parameters update on the state of charge estimation, making a comparison between the 

offline and the online state under the RLS method to estimate the SOC required to the Lithium-ion battery.the 

online parameter identification based on RLS is used to obtain the resistance and capacitance parameters of the 

battery model in real time, what goes next in this study, cause an improvement of the errors associated to the 

SOC estimation compared to the fixed parameters case.The novelty of the proposed Simulink model required 

to the improved EKF model is the association between the HPPC test and the RLS algorithm fixed to update 

the battery parameter in real time. 

       The structure of this article is as follows: The basics of battery modeling are provided in section 2. The 

Extended Kalman Filter algorithm is presented in section 3. In order to estimate the needed SOC and model 

parameters for the battery model, Section 4 describes the traditional RLS estimation in general and the 

suggested one in detail. Section 5 offers the suggested approach for improving the EKF for SOC estimate. It is 

based on the identification of battery parameter using the recursive least squares method. The Matlab/Simulink 

model needed for this suggested strategy is shown in Section 5 along with a discussion of the results, and the 

conclusion is given in Section 6. The goal of the paper is the modelling of the State of charge estimation of the 

Lithium –ion battery based on extended kalman filter with the online parameter update with the recursive least 

square method, in order to improve the error of estimation . 

2. STATE SPACE MODEL 

2.1. Battery modelling 

          The equivalent circuit model simulates a battery by using conventional circuit elements such as resistors, 

capacitors, and others. If the analogous circuit model's input parameters are executed properly, a high level of 

accuracy can be obtained. Equivalent circuit models are used increasingly frequently in the actual application 

of BMS in electric vehicles. As a result, there is a trade-off between accuracy and complexity when examining 

the model's parameters [13]. a design that is typically used in literature is the RC-equivalent circuit model or 

the reduced Thevenin model [14] [15]. The Thevenin model, which is also called first-order resistor-capacitor 

(RC) equivalent circuit model, is often used for lithium-ion battery modeling and analysis in electric vehicle 

battery modelling [12], [16]. In this article, the Thevenin model is used as battery model, as shown in Figure 1 

:  
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Figure 1. The first thevenin model 

▪ Internal resistance R0  : represents the conduction resistance of the battery.     

▪ Configuration for an RC loop: equivalent branch capacitors Cp and resistors Rp. 

▪ Open-circuit voltage OCV: electromotive forces inside the storage mechanism. 

       To represent the dynamic properties of the lithium-ion battery, the RC figure's parameters are all not linear 

and vary dynamically. It also uses a connection between polarization resistor 𝑅p and polarization capacitor 𝐶p 

and v ary dynamically. 

2.2. Soc Estimation model 

      A Li-ion battery's SOC cannot be measured directly, instead, it is calculated based on the battery's 

operational condition and properties. SOC's value is expressed using the definition of Ah, The following 

equation (1) illustrates this definition : 
 

 

SOC(t) = SOC( t0) +
∫ kTi( τ)d τ

t

t0

QN

 

 
(1)           

        Where 𝐒𝐎𝐂( 𝐭𝟎)is the 𝐒𝐎𝐂 of the battery at the time, 𝐤𝐓 is the Li-ion battery's temperature correction 

factor at temperature  T .i (𝛕 ) is the battery's current flowing at the moment 𝛕 , 𝐐𝐍 is the battery's valued 

capacity. 

       The variation in SOC can be calculated using the ampere-time integration approach. While the battery is 

still on, This technique allows for immediate measurement of its variables. In a short period of time, the results 

are quite reliable, internal battery adjustments have less of an impact on measurement accuracy, but The correct 

computation of SOC's initial value is not provided. Model parameter identification tests are commonly used to 

determine the link between SOC and the cell's open circuit potential. Calculating the battery's open circuit 

voltage can then be used to predict the original value of SOC. This method's equation for calculating SOC is 

shown below, where 𝐎𝐂𝐕 is the open circuit voltage value. 

                                                   [
SOC k
Up,k

] = [
1 0

0 e
 ΔT

RpCp
⁄ ] [

SOC k−1

Up,k−1
] + [

 ΔT

Qn

Rp (1 − e
−   ΔT

RpCp
⁄

)

] Ik−1  W k−1                                      (2) 

        Where 𝛥𝑇 is discrete step size, 𝑊 𝑘−1 is the actual level of process noise 𝑘 − 1,𝑊 𝑘−1 is the quantity of 

noise detected at time k. 

3. EKF ALGORITHM    

          The Kalman filter is a technique for assessing the state of a nonlinear dynamical system, that is used in 

a range of fields for tracking, navigation, and control [17]. It truly makes use of the system's dynamics, which 

define its evolution through time. Because Li-ion batteries have nonlinear behavior, For battery monitoring, 

this estimation technique is often used [18]. Various Kalman filtering approaches were used to predict SOC, 

including the linear Kalman filter (KF) [18], the extended Kalman filter (EKF) [19], the unscented Kalman 

filter (UKF) [20]. Unlike the KF, which requires a linear formulation, the EKF requires a local linearization, 

which entails employing the Jacobian derivation in order to convert the system to the usual state, instead of a 

fixed matrix with interconnected components. The continuous-time Kalman filter is the limiting case of the 

discrete-time Kalman filter as the sample time becomes infinitely small, for this reason, the formulating of an 

extended Kalman Filter Problem require discrete time linear dynamic system description by vector difference 

equation with additive white noise that models unpredictable disturbances[21].  
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The EKF can provide the most accurate prediction of the intended recipient state with the least amount of 

variance, and it's commonly used in lithium- ion battery SOC calculation. For the situation that battery working 

conditions change rapidly, a recursive calculation method based on the extended Kalman filter is the most 

adopted strategy to estimate the charge of the battery [22].     

The state equation of discrete space for the nonlinear system is as follows: 

                                                         𝑥k =  𝑓(𝑥k−1, 𝑢𝑘−1) + 𝑤𝑘−1  =  𝐴𝑘−1 𝑥𝑘−1 + 𝐵𝑘−1 𝑢k−1 + 𝑤𝑘−1                                    (3) 
 

 
 

                                        𝑧k = ℎ(𝑥k) + 𝑣𝑘−1    =    𝐶𝑘 𝑥k + 𝐷𝑘  𝑢k + 𝑣𝑘                                                           (4)     
  
       Where 𝑥k denotes the state of the system at time k, 𝑥k ∈  𝑅𝑛 𝑢𝑘 denotes the control variable, 𝑧𝑘 denotes 

the measurement vector, 𝑧k ∈  𝑅𝑛  , ω𝑘 and v𝑘 represent the noise caused by the process and the noise caused 

by the measurement, respectively, ω𝑘 and v𝑘 are unrelated and have a Gaussian distribution, 𝑄k and  𝑅k are 

covariance, f(. ) and h(. ) are nonlinear functions. Initially, the nonlinear functions f(. ) and h(. ) are linearized. 

                                                 𝐴𝑘 =  
𝜕𝑓

𝜕𝑥𝑘

= [ 

1 0 0

0 𝑒
𝑇

𝑅1𝐶1
⁄ 0

0 0 𝑒
𝑇

𝑅1𝐶1
⁄

]                                                          (5) 

 

                                                  𝐵𝑘 =  
𝜕𝑓

𝜕𝑢𝑘
= [

1 

𝜂 𝑇
𝐶1

⁄

𝑅1(1 − 𝑒
𝑇

𝑅1𝐶1
⁄ )

]                                                             (6) 

 

                                            𝐶𝑘 =  
𝜕𝑔

𝜕𝑥𝑘
=  [

𝜕𝑉𝑇

𝜕𝑧
𝑧 = 𝑧𝑘

⁄    − 1         1]                                                 (7) 

 

                                            𝐷𝑘 =  
𝜕ℎ

𝜕𝑢𝑘
=  [𝑅0]                                                                                                      (8) 

 

Table 1. An overview of the extended Kalman filter (EKF) 
1 Initialization of parameters 𝐱𝟎 = 𝐄(𝐱𝟎),   𝐏𝟎 = [(𝐱𝟎 − �̂�𝟎)(𝐱𝟎 − �̂�𝟎)𝐓] 
 
 

2 

 

 

Prediction of the State 

 
x̂k+1 k⁄

− = f(x̂k k⁄ , uk) + wk  
 

Pk k+1⁄ =  AkPk k⁄ AK
T + Qk 

 
3 Gain of the Kalman filter Kk+1 =  Pk k+1⁄ CK

T[CkPk+1 k⁄ CK
T + R̂k]−1 

4 Measure values updated ẑk+1 = h(x̂k k⁄  ) +  vk 
 
 

5 

 
Posteriori estimates 

 
x̂k+1 =  x̂k+1 k⁄

− + K( zk+1 − ẑk+1) 
 

Pk+1 k+1⁄ = [I − Kk+1Ck]Pk+1 k⁄  
 

        

      Where x0 indicates the initial state value, P0 indicates the initial covariance, x̂k+1 k⁄
−  represents the k+1 prior 

estimate, Pk k+1⁄  represents the k+1 prior covariance, Pk k⁄  represents the k prior covariance, Kk+1 denotes the 

kalman gain of k+1, x̂k+1 represents the k+1 posterior estimate, Pk+1 k+1⁄  denotes the k+1 covariance .  

       We actually, in fact, adopt a model-based technique for estimating the SOC. The first-order equivalent 

model serves as the foundation for this method, which possesses a high level of accuracy while requiring the 

fewest parameters. As described in the preceding part, we used our proposed model as OCV in this model. The 

extended Kalman filter was then utilized for SOC estimate, which is an adaptive approach according to a state 

observation.  

        The prediction of R0 , Rp , Cp  is highly required in order to ensure an online state of charge estimation 

based on EKF. 

4. BATTERY PARAMETER IDENTIFICATION BASED ON RECURSIVE LEAST SQUARE 

METHOD 

       The least squares estimation is a commonly used technique for estimating the approximate parameters 

value of a static system by decreasing the sum of the squared errors between the observable values and their 
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simulated results. For real-time application, continuous parameter monitoring and the associated updated 

estimating method demand a significant computing work. Recursive methods, like RLS estimation, are favored 

to reduce calculation time since system model parameters are considered to be constant. The model parameters 

that must be estimated are, however, time-varying in many situations. 
 

      The estimate can be taken care of by routinely resetting the computing process in the event of a dramatic 

but occasional change in the parameters. While a mathematical approach, like the RLS [9][23][24], is necessary 

in the case of continuously variable parameters. Given the situations indicated above, some writers have 

suggested using the recursive least-squares (RLS) method to similar electrical models in order to solve these 

problems [9], [10] [25]. RLS concurrently calculates OCV and the battery model parameters to adjust for their 

real variations over the course of the battery's lifecycle and under various operating situations[9] [26]. This 

work also uses recursive least squares with forgetting factors to identify the battery parameters. Online 

parameter estimation often uses RLS methods[27] [28]. The transfer function of the electrical behavior of the 

battery model in the equivalent circuit model may be written as follows using the Laplace transform: 

 
 

                                                                   H(s) =  
U−OCV

I
=  R0 +

1

1+RpCp.s
                                                                       (9)  

 
 

     Then, this transfer function H(s) is discretized using the fundamental Forward/Euler transformation 

technique. The discrete-time system H(z)  is shown using the z-transform as: 

 

                                                                H(z) =  
b0+b1z−1

a0+a1z−1                                                                                 (10) 

 

Where 𝑎0, 𝑎1,𝑏0 and 𝑏1 are the corresponding coefficients. Next, the model terminal voltage in Refs [29] [30] 

can be expressed as in the following equation: 

 
                                                                𝑈(𝑘) =  −𝑎1𝑈(𝑘 − 1) ± 𝑏0𝐼(𝑘) + 𝑏1𝐼(𝑘 − 1) + 𝑂𝐶𝑉(𝑘)                                       (11)     
             
As illustrated in Ref [31], [32], the general model of RLS is shown as: 

 

                                                    �̂�(𝑘) =  �̂�(𝑘)𝑏𝑎𝑡𝑡 = 𝜑(𝑘)𝑇(𝑘)�̂�(𝑘) + 𝑒(𝑘)                                                  (12)  
 

With:  

𝜑(𝑘):   is the Regressor vector composed of the battery source's input current Ib and output voltage Ub.  

�̂�𝑘:  is a vector of unknown parameters or an estimated parameter composed of the coefficients 𝑎1, 𝑎0 , 𝑏0,
and 𝑏1 

𝑒𝑘 : is the prediction error of the terminal voltage. 

However, the regression vectors 𝜑(𝑘)  and �̂�𝑘 are given below: 

 

                                                             φ(k) = [Ub(k)Ub(k − 1)Ib(k)Ib(k − 1)]                                             (13)      
                           
 

                                                      θ̂k = [  a0 (k)   a1(k)       b1(k)  ]                                                                          (14) 
 

Moreover, the recursive gain matrix 𝐿(𝐾)  is described by Eq. 15: 

 
 

                                                           L(K) =
[FλP(k−1)+ Qλ] φ(k)

φ(k)T [FλP(k−1)+ Qλ] φ(k)+ Rr
                                                                         (15) 

 

 

With 𝐹𝜆  is the forgetting factor[33], [34] [35]. Finally, Figure 2 outlines the RLS procedures. 
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       Figure 2. Steps of RLS algorithm 

5. IMPROVED EKF FOR THE SOC ESTIMATION   

       The EKF approach is restricted to system tracking and relies on observations for correction. The EKF 

method will therefore degrade into an information filter with a slower rate of convergence. Additionally, 

increasing model accuracy or promptly adapting the model to the system has a greater significance for 

enhancing convergence speed and resilience. [36] 

      The basic mechanism for adapting the model to actual systems is online parameter identification. The 

parameters of the frst-order ECM include 𝑅0,𝑅𝑝, 𝐶𝑝.  𝑅𝑝and  𝐶𝑝 represents the battery polarization effects, 

utilized for modeling the system's long-term and dynamic characteristics. As a result, the online identification 

process has to incorporate the mentioned factors. Interesting aspects of this state space theory abound. First,  

the state update matrix is a unit matrix with minimal computing cost and good positive definiteness. 

Additionally, the battery equivalent circuit model and the system's observation equation are identical. 

Accordingly, both the measured voltage value and the polarization characteristic are impacted. As a result, the 

ECM's predicting and update mechanism needs to receive feedback from the online parameter identification. 

The capacity to update parameters that depend on observation will be impacted by the SOC estimate result. 

Figure 3 depicts the adaptive parameter procedure. The selected parameters are shown in Table 2 while taking 

the filter algorithms' influential variables into account. 
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Figure 3. Process of online parameter identifcation 

Table 2. The selected factors of filter algorithm for SOC estimation 
Item Value Description 

P Identity matrix The initialisation of co-variance Matrix 
Q [0.01;-0,01] The selected processing noise 

R 0,04 The selected observation noise 
 𝐗𝟎 [0;1] The initialization of state matrix 

 

       

       Estimation of online battery parameters: The increased state estimate is based on more than just the OCV-

SOC connection, which is updated on a regular basis, but also on the other dynamic characteristics of the 

energy storage model. Since the RLS performed well in identifying the parameters, it was incorporated into 

our strategy, specifically in identifying the remaining parameters (R0, Rp, and Cp) so that they could be 

accurately reflected in the Li-ion battery model. 

        As illustrated in Figure 4, this combination of the OCV and RLS methods is used to estimate the 

matrices 𝐴𝑘 , 𝐵𝑘 ,  𝐷𝑘  and the correction matrix  𝐶𝑘that will be employed by the EKF and SOC estimator.  EKF 

is fixed to estimate the voltage and to modulate in due time the noise signal according to the error matrix. 

Because of their quick convergence and effective ability to reduce the cumulative effect of noise, irrespectively 

of the Li-ion battery model, process has shown that the EKF and RLS algorithm with forgetting factor are 

usually applied [37] [38]. In the following section, we will examine the OCV-SOC test the Simulink model 

related to the improved model fixed in this paper. In the next part, the performance of the fusion technique 

OCV-RLS for online SOC estimation is examined with the equivalent OCV approach. 
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Figure 4. Proposed algorithm 

5.1. OCV Test and SOC identification.  

         The Lithium-ion and the pre-proposed OCV-SOC test are trained for this section. It is advised to begin 

the test with a fully charged battery equivalent to 100% SOC and the maximum Ubatt voltage. The OCV -SOC 

characterisation refers to the pulsative discharge process of the storage element, which uses an enforced 

constant low current and follows the cycle seen in Figure 5 above. Since the fitted OCV should be as similar 

to the experimental OCV as is practical and the fitting performance is better with a higher order polynomial 

function, it has been developed to determine OCV values between two data points, using the relationship 

between OCV and SOC [39] [40]. The mathematical link between SOC and Uoc is identified by the use of the 

polynomial function of  𝟕𝐭𝐡 order, and this relationship is required for determining the state of charge: 

                                                                     𝑆𝑂𝐶(𝑂𝐶𝑉) =  ∑ 𝑎𝑖,𝑘𝑆𝑂𝐶𝑘
𝑖

𝑖=7

𝑖=0

                                                                   (16) 

 

  𝑆𝑂𝐶(𝑂𝐶𝑉) = 𝑘0 + 𝑘1 ∗ 𝑆𝑂𝐶 + 𝑘2 ∗ 𝑆𝑂𝐶2 + +𝑘3 ∗ 𝑆𝑂𝐶3 + 𝑘4 ∗ 𝑆𝑂𝐶4 + 𝑘5 ∗ 𝑆𝑂𝐶5 + 𝑘6 ∗ 𝑆𝑂𝐶6 + 𝑘7 ∗ 𝑆𝑂𝐶7 

 
𝑆𝑂𝐶(𝑂𝐶𝑉) = 2.766  + 14.23 ∗ 𝑆𝑂𝐶  − 108.4 ∗ 𝑆𝑂𝐶2 + +435 ∗ 𝑆𝑂𝐶3 − 958.4  ∗ 𝑆𝑂𝐶4 + 1171 ∗ 𝑆𝑂𝐶5 − 741.7 ∗ 𝑆𝑂𝐶6 + 190.1

∗ 𝑆𝑂𝐶7 

          The experimental OCV- SOC values profiles that were found are shown in Figure 5, along with the 

fitting  method that was used. The Curve Fitting Toolbox of Matlab may be used to implement Serval fitting 

techniques and algorithms. 
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Figure 5.  𝑈𝑜𝑐   and SOC curve of the lithium battery 

5.2. Simulink model associated to the proposed method         

      To investigate the effectiveness of the recommended approach, a simulation model is created in 

MATLAB/Simulink as shown in figure 6. The parameters associated to the simulated battery are reported in 

Table 3 [41]. In addition, the EKF estimate method with fixed parameter is compared to the improved EKF 

model. The implementation of the improved model in Matlab/Simulink is shown in figure 6 :  

 

 
Figure 6. Simulink model required to the improved EKF model 

Table 3. Parameters of Li-ion battery 

Parameter Value Unit 
Capacity 5 Ah 
Voltage 3.4 V 

Continuous discharge maximum 20 A 
Resistance 1.445 mΩ 

Polarization resistance 3.506 mΩ 
Polarization capacitor 14.6 kF 

5  
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      A HPPC test (Hybrid Pulse Power Characterization) discharge was implemented for the lithium-ion battery 

as current/voltage to gather estimation data for defining model parameters, as seen in the Figure 7/8. HPPC 

test is a foundation of power battery characteristic test and model parameter identification test, this 

environnement require a list of parameter to controle the battery state, in our study we use the current and the 

voltage profil to realize the simulation, The discharge current is 5 A, this test was developed to study dynamic 

power capability across the device's usable charge and voltage ranges [42] . 

 
Figure 7. The HPPC condition current 

 
Figure 8. The HPPC condition voltage 

         Figures 9 and 10 show a comparison between the estimated SOC produced using our suggested strategy 

and the real value of SOC, it’s the comparaison of SOC calculated by EKF method without parameter update 

with the real SOC. The novelty of the proposed Simulink model required to the improved EKF model is 

applying the HPPC test with the parameter update in the real time during the battery discharge.  

     The improved EKF method is considered to be a benchmark because, the accumulative error is negligible. 

We can see in Figure 9 that the estimation error does not exceed 4.67% . In this case we can see that the 

identification of the battery parameter’s can minimize the error of SOC estimation with the EKF method 

compared with this method by fixed parameters. 
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Figure 9. Real SOC vs SOC with constant parameter 

 
Figure 10. Real SOC vs SOC with updated parameters 

        In order to contrast the characteristics of the algorithms above, the 3 indicators MSE, RMSE, and MAE 

are listed in Table 4. The SOC estimation results were actually linked to evaluate the prediction results of these 

algorithms, by Root Mean Square Error (RMSE), Mean Squaere Error (MSE), and Mean Absolute Error 

(MAE). As illustrated in Tables 4, based on the definition equation (17), (18), (19). 
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Table 4. MSE, RMSE, and MAE values of EKF and improved EKF 
 

Method (%) MAE MSE RMSE 

EKF (%) 0.65 5.88 7.24 

Improved EKF (%) 0.09 2.22 4.67 
 

      

       Table 4 demonstrates that the MSE, RMSE, and MAE values of EKF in the HPPC environment are half 

as reduced as EKF with fixed parameter, the proposed model predicts MAE of 0.09 %, RMSE of 7,24 % and 

MSE of 5,88 % in case of RLS- EKF estimation. In this case, it can be inferred that the RLS-EKF approach 

performs better in terms of estimation. As a result, the EKF approach performs better under HPPC settings 

than the EKF with fixed parameter, as well as the SOC estimation based on EKF is more accurate than the Ah 

counting method which is considered as the method of reference value (reel SOC estimation).  

       In the application on lithium-ion batteries, we can say that these error level express a similarity with the 

error that can be obtained with the method multiple adaptive forgetting method factors recursive least-squares 

which is applied to identify the parameters of the LiFePO4 battery, which does not exceed a level of error of 

5%  [43]. The simulation results show that the proposed strategy based on the recursive least square algorithm 

successfully improve the error of estimation associated to the SOC estimation with the EKF algorithm 

compared with the EKF algorithm applied to a battery with fixed parameters. The recursive least square method 

was able to make the update of R0,Rp and Cp regarding the dyscharge of the battery under the HPPC test. These 

results confirm the effectiveness of the proposed strategy in improving the SOC estimation under the Extended 

kalman filter method.  

6. CONCLUSION   

          Lithium-ion battery data were used to generate a correct SOC for the battery using online parameter 

identification and state estimation techniques. A nonlinear OCV-SOC relationship derived from experimental 

tests was taken into consideration while developing an RC equivalent model for the battery. A generic 

parameter identification method was used to identify SOC functions. RLS continually updates the Thevenin 

model's parameters. The recursive technique to estimate SOC is performed out with the nonlinear Extended 

Kalman filter. In order to enhance the precision of SOC estimation under changing battery charge and discharge 

circumstances, we presented a regression least-squares-extended Kalman filter (RLS-EKF) to estimate SOC in 

this paper. The algorithms were designed in Matlab/Simulink, and the results were again compared to ensure 

the accuracy. The simulation results demonstrated that the RLS-SOC EKF's estimation strategy, which is based 

on precise modeling, may significantly increase SOC estimate accuracy, this study shows the indispensability 

of the online monitoring of the battery parameters during the discharge, in order to give an accurate estimation 

of the state of charge. This research's key findings include the SOC estimate of lithium-ion batteries operating 

in an HPPC environment, as well as the impact of updating battery parameters on the error of estimation. In 

order to satisfy the requirements of genuine electric vehicles as specified by automobile manufacturers, 

batteries with improved performance at various temperatures and aging effects will be employed as the 

experimental objects in our future work. 

 

 

ACKNOWLEDGEMENTS  
        

      I am grateful to all of those with whom I have had the pleasure to work during this and other related 

projects,  I would like to acknowledge and give my warmest thanks to my phd project director M.Tarik Jarou 

and all the members of the advanced systems engineering laboratory. 
 

REFERENCES  

 

[1] S. Han, B. Zhang, X. Sun, S. Han, and M. Höök, “China’s Energy Transition in the Power and 

Transport Sectors from a Substitution Perspective,” Energies, vol. 10, no. 5, Art. no. 5, May 2017, doi: 

10.3390/en10050600. 

[2] M. M. Hoque, M. A. Hannan, A. Mohamed, and A. Ayob, “Battery charge equalization controller in 

electric vehicle applications: A review,” Renew. Sustain. Energy Rev., vol. 75, no. C, pp. 1363–1385, 

2017. 

[3] “A New BMS Architecture Based on Cell Redundancy | IEEE Journals & Magazine | IEEE Xplore.” 

https://ieeexplore.ieee.org/document/5645678 (accessed Mar. 06, 2023). 



                ISSN: 2737-8071 

Int J Eng & App Phy, Vol. 3, No. 2, May 2023:  706 - 719 

718 

[4] L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, “A review on the key issues for lithium-ion battery 

management in electric vehicles,” J. Power Sources, vol. 226, pp. 272–288, Mar. 2013, doi: 

10.1016/j.jpowsour.2012.10.060. 

[5] G. Plett, “Extended Kalman filtering for battery management systems of LiPB-based HEV battery 

packsPart 1. Background,” J. Power Sources, Jun. 2004, doi: 10.1016/S0378-7753(04)00359-3. 

[6] R. Xiong, H. He, F. Sun, and K. Zhao, “Evaluation on State of Charge Estimation of Batteries With 

Adaptive Extended Kalman Filter by Experiment Approach,” IEEE Trans. Veh. Technol., vol. 62, no. 

1, pp. 108–117, Jan. 2013, doi: 10.1109/TVT.2012.2222684. 

[7] F. Zhang, G. Liu, L. Fang, and H. Wang, “Estimation of Battery State of Charge With ınfty Observer: 

Applied to a Robot for Inspecting Power Transmission Lines,” IEEE Trans. Ind. Electron., vol. 59, no. 

2, pp. 1086–1095, Feb. 2012, doi: 10.1109/TIE.2011.2159691. 

[8] A. Alfi, M. Charkhgard, and M. Haddad Zarif, “Hybrid state of charge estimation for lithium-ion 

batteries: design and implementation,” IET Power Electron., vol. 7, no. 11, pp. 2758–2764, 2014, doi: 

10.1049/iet-pel.2013.0746. 

[9] H. He, X. Zhang, R. Xiong, Y. Xu, and H. Guo, “Online model-based estimation of state-of-charge and 

open-circuit voltage of lithium-ion batteries in electric vehicles,” Energy, vol. 39, no. 1, pp. 310–318, 

Mar. 2012, doi: 10.1016/j.energy.2012.01.009. 

[10] W. Waag, C. Fleischer, and D. U. Sauer, “Critical review of the methods for monitoring of lithium-ion 

batteries in electric and hybrid vehicles,” J. Power Sources, vol. 258, pp. 321–339, Jul. 2014, doi: 

10.1016/j.jpowsour.2014.02.064. 

[11] H. Rahimi-Eichi, U. Ojha, F. Baronti, and M.-Y. Chow, “Battery Management System: An Overview 

of Its Application in the Smart Grid and Electric Vehicles,” IEEE Ind. Electron. Mag., vol. 7, no. 2, pp. 

4–16, Jun. 2013, doi: 10.1109/MIE.2013.2250351. 

[12] “Energies | Free Full-Text | Online Parameter Identification and State of Charge Estimation of 

Lithium-Ion Batteries Based on Forgetting Factor Recursive Least Squares and Nonlinear Kalman 

Filter.” https://www.mdpi.com/1996-1073/11/1/3 (accessed Jan. 09, 2023). 

[13] “Adaptive parameter identification and State-of-Charge estimation of lithium-ion batteries.” 

https://ieeexplore.ieee.org/abstract/document/6389248/ (accessed Jan. 09, 2023). 

[14] L. Zhang, X. Hu, Z. Wang, F. Sun, and D. G. Dorrell, “A review of supercapacitor modeling, 

estimation, and applications: A control/management perspective,” Renew. Sustain. Energy Rev., vol. 

81, pp. 1868–1878, Jan. 2018, doi: 10.1016/j.rser.2017.05.283. 

[15] “Energies | Free Full-Text | A New Method for State of Charge Estimation of Lithium-Ion Batteries 

Using Square Root Cubature Kalman Filter.” https://www.mdpi.com/1996-1073/11/1/209 (accessed 

Jan. 09, 2023). 

[16] S. Panchal, I. Dincer, M. Agelin-Chaab, M. Fowler, and R. Fraser, “Uneven temperature and voltage 

distributions due to rapid discharge rates and different boundary conditions for series-connected 

LiFePO4 batteries,” Int. Commun. Heat Mass Transf., vol. 81, pp. 210–217, Feb. 2017, doi: 

10.1016/j.icheatmasstransfer.2016.12.026. 

[17] W.-Y. Chang, “The State of Charge Estimating Methods for Battery: A Review,” ISRN Appl. Math., 

vol. 2013, pp. 1–7, Jul. 2013, doi: 10.1155/2013/953792. 

[18] I. Baccouche, S. Jemmali, B. Manai, R. Chaibi, and N. E. Ben Amara, “Hardware implementation of 

an algorithm based on kalman filtrer for monitoring low capacity Li-ion batteries,” in 2016 7th 

International Renewable Energy Congress (IREC), Mar. 2016, pp. 1–6. doi: 

10.1109/IREC.2016.7478930. 

[19] Z. Yu, R. Huai, and L. Xiao, “State-of-Charge Estimation for Lithium-Ion Batteries Using a Kalman 

Filter Based on Local Linearization,” Energies, vol. 8, no. 8, Art. no. 8, Aug. 2015, doi: 

10.3390/en8087854. 

[20] W. Zhang, W. Shi, and Z. Ma, “Adaptive unscented Kalman filter based state of energy and power 

capability estimation approach for lithium-ion battery,” J. Power Sources, vol. 289, pp. 50–62, Sep. 

2015, doi: 10.1016/j.jpowsour.2015.04.148. 

[21] I. Reid and H. Term, “1 Discrete-time Kalman filter”. 

[22] M. Partovibakhsh and G. Liu, “An Adaptive Unscented Kalman Filtering Approach for Online 

Estimation of Model Parameters and State-of-Charge of Lithium-Ion Batteries for Autonomous Mobile 

Robots,” IEEE Trans. Control Syst. Technol., vol. 23, no. 1, pp. 357–363, Jan. 2015, doi: 

10.1109/TCST.2014.2317781. 

[23] A. Vahidi, A. Stefanopoulou, and H. Peng, “Recursive least squares with forgetting for online 

estimation of vehicle mass and road grade: theory and experiments,” Veh. Syst. Dyn., vol. 43, no. 1, pp. 

31–55, Jan. 2005, doi: 10.1080/00423110412331290446. 

[24] K. J. Åström and B. Wittenmark, Adaptive Control: Second Edition. Courier Corporation, 2013. 



Int J Eng & App Phy ISSN: 2737-8071  

 

The parameter update of Lithium-ion battery by the RSL algorithm for the SOC estimation ..(Elmehdi Nasri) 

719 

[25] H. Rahimi-Eichi, F. Baronti, and M.-Y. Chow, “Online Adaptive Parameter Identification and State-of-

Charge Coestimation for Lithium-Polymer Battery Cells,” IEEE Trans. Ind. Electron., vol. 61, no. 4, 

pp. 2053–2061, Apr. 2014, doi: 10.1109/TIE.2013.2263774. 

[26] R. Xiong, F. Sun, X. Gong, and C. Gao, “A data-driven based adaptive state of charge estimator of 

lithium-ion polymer battery used in electric vehicles,” Appl. Energy, vol. 113, pp. 1421–1433, Jan. 

2014, doi: 10.1016/j.apenergy.2013.09.006. 

[27] H. Harmoko et al., “Online Battery Parameter And Open Circuit Voltage (OCV) Estimation Using 

Recursive Least Square (RLS),” Techné J. Ilm. Elektrotek., vol. 15, no. 01, Art. no. 01, Apr. 2016, doi: 

10.31358/techne.v15i01.141. 

[28] W. He, N. Williard, C. Chen, and M. Pecht, “State of charge estimation for electric vehicle batteries 

using unscented kalman filtering,” Microelectron. Reliab., vol. 53, no. 6, pp. 840–847, Jun. 2013, doi: 

10.1016/j.microrel.2012.11.010. 

[29] Z. Zeng, J. Tian, D. Li, and Y. Tian, “An Online State of Charge Estimation Algorithm for Lithium-Ion 

Batteries Using an Improved Adaptive Cubature Kalman Filter,” Energies, vol. 11, no. 1, Art. no. 1, 

Jan. 2018, doi: 10.3390/en11010059. 

[30]  he Hongwen, R. Xiong, H. Guo, and S. Li, “Comparison study on the battery models used for the 

energy management of batteries in electric vehicles,” Energy Convers. Manag., vol. 64, pp. 113–121, 

Dec. 2012, doi: 10.1016/j.enconman.2012.04.014. 

[31] Z. Wei, C. Zou, F. Leng, B. Soong, and K. Tseng, “Online Model Identification and State-of-Charge 

Estimate for Lithium-Ion Battery With a Recursive Total Least Squares-Based Observer,” IEEE Trans. 

Ind. Electron., vol. PP, pp. 1–10, Aug. 2017, doi: 10.1109/TIE.2017.2736480. 

[32] H. Harmoko et al., “Online Battery Parameter And Open Circuit Voltage (OCV) Estimation Using 

Recursive Least Square (RLS),” Techné J. Ilm. Elektrotek., vol. 15, no. 01, Art. no. 01, Apr. 2016, doi: 

10.31358/techne.v15i01.141. 

[33] S. Herdjunanto, “Estimation of Open Circuit Voltage and electrical parameters of a battery based on 

signal processed by Recursive Least Square method using two separate forgetting factors,” 2016 6th 

Int. Annu. Eng. Semin. InAES, pp. 67–71, Aug. 2016, doi: 10.1109/INAES.2016.7821909. 

[34] M. Maraş, E. N. Ayvaz, and A. Özen, “A novel adaptive variable forgetting factor RLS algorithm,” in 

2018 26th Signal Processing and Communications Applications Conference (SIU), May 2018, pp. 1–4. 

doi: 10.1109/SIU.2018.8404408. 

[35] H. Darong, K. Lanyan, M. Bo, Z. Ling, and S. Guoxi, “A New Incipient Fault Diagnosis Method 

Combining Improved RLS and LMD Algorithm for Rolling Bearings With Strong Background Noise,” 

IEEE Access, vol. 6, pp. 26001–26010, 2018, doi: 10.1109/ACCESS.2018.2829803. 

[36] S. Yang et al., “A parameter adaptive method for state of charge estimation of lithium-ion batteries 

with an improved extended Kalman filter,” Sci. Rep., vol. 11, p. 5805, Mar. 2021, doi: 

10.1038/s41598-021-84729-1. 

[37] M. A. Hannan, M. S. H. Lipu, A. Hussain, and A. Mohamed, “A review of lithium-ion battery state of 

charge estimation and management system in electric vehicle applications: Challenges and 

recommendations,” Renew. Sustain. Energy Rev., vol. 78, pp. 834–854, Oct. 2017, doi: 

10.1016/j.rser.2017.05.001. 

[38] P. Spagnol, S. Rossi, and S. M. Savaresi, “Kalman Filter SoC estimation for Li-Ion batteries,” 2011 

IEEE Int. Conf. Control Appl. CCA, pp. 587–592, Sep. 2011, doi: 10.1109/CCA.2011.6044480. 

[39] D. Sun et al., “State of charge estimation for lithium-ion battery based on an Intelligent Adaptive 

Extended Kalman Filter with improved noise estimator,” Energy, vol. 214, p. 119025, Jan. 2021, doi: 

10.1016/j.energy.2020.119025. 

[40] M.-K. Tran, A. DaCosta, A. Mevawalla, S. Panchal, and M. Fowler, “Comparative Study of Equivalent 

Circuit Models Performance in Four Common Lithium-Ion Batteries: LFP, NMC, LMO, NCA,” 

Batteries, vol. 7, no. 3, Art. no. 3, Sep. 2021, doi: 10.3390/batteries7030051. 

[41] Z. Cui, W. Hu, G. Zhang, Z. Zhang, and Z. Chen, “An extended Kalman filter based SOC estimation 

method for Li-ion battery,” Energy Rep., vol. 8, pp. 81–87, Aug. 2022, doi: 

10.1016/j.egyr.2022.02.116. 

[42] H. Zhang, H. W. Mu, Y. Zhang, and J. Han, “Calculation and Characteristics Analysis of Lithium Ion 

Batteries’ Internal Resistance Using HPPC Test,” Adv. Mater. Res., vol. 926–930, pp. 915–918, 2014, 

doi: 10.4028/www.scientific.net/AMR.926-930.915. 

[43] V.-H. Duong, H. A. Bastawrous, K. Lim, K. W. See, P. Zhang, and S. X. Dou, “Online state of charge 

and model parameters estimation of the LiFePO4 battery in electric vehicles using multiple adaptive 

forgetting factors recursive least-squares,” J. Power Sources, vol. 296, pp. 215–224, Nov. 2015, doi: 

10.1016/j.jpowsour.2015.07.041. 
 


